1 module canvas.path;
2 import canvas.math;
3 
4 alias Path = AbstractPath!double;
5 alias FPath = AbstractPath!float;
6 
7 enum PathCommand {
8 	Move,
9 	Line,
10 	QuadCurve,
11 	CubicCurve,
12 	Close,
13 }
14 
15 struct AbstractPath(T) {
16 	immutable(AbstractVec2!T)[] values;
17 	immutable(PathCommand)[] commands;
18 
19 	this(V)(AbstractPath!V base) {
20 		foreach (v; base.values) {
21 			values ~= AbstractVec2!T(v);
22 		}
23 		commands = base.commands;
24 	}
25 
26 	void moveTo(AbstractVec2!T point) {
27 		values ~= point;
28 		commands ~= PathCommand.Move;
29 	}
30 
31 	void lineTo(AbstractVec2!T point) {
32 		values ~= point;
33 		commands ~= PathCommand.Line;
34 	}
35 
36 	void curveTo(AbstractVec2!T control, AbstractVec2!T point) {
37 		values ~= [control, point];
38 		commands ~= PathCommand.QuadCurve;
39 	}
40 
41 	void curveTo(AbstractVec2!T control1, AbstractVec2!T control2, AbstractVec2!T point) {
42 		values ~= [control1, control2, point];
43 		commands ~= PathCommand.CubicCurve;
44 	}
45 
46 	void close() {
47 		commands ~= PathCommand.Close;
48 	}
49 
50 	auto opBinary(string op)(const(AbstractPath!T) rhs) const if (op == "~") {
51 		Path result;
52 		result.values = values ~ rhs.values;
53 		result.commands = commands ~ rhs.commands;
54 		return result;
55 	}
56 
57 	auto opOpAssign(string op, T)(T value) {
58 		this = mixin("this" ~ op ~ "value");
59 		return this;
60 	}
61 
62 	AbstractPath!T flatten() {
63 		AbstractPath!T newPath;
64 
65 		AbstractVec2!T lastPoint, lastMove;
66 		size_t pointIndex;
67 		foreach (cmd; commands) {
68 			final switch (cmd) {
69 			case PathCommand.Move:
70 				auto point = values[pointIndex++];
71 				newPath.moveTo(point);
72 				lastMove = point;
73 				lastPoint = point;
74 				break;
75 			case PathCommand.Close:
76 				newPath.close();
77 				lastPoint = lastMove;
78 				break;
79 			case PathCommand.Line:
80 				auto point = values[pointIndex++];
81 				newPath.lineTo(point);
82 				lastPoint = point;
83 				break;
84 			case PathCommand.QuadCurve:
85 				auto start = lastPoint;
86 				auto control = values[pointIndex++];
87 				auto point = values[pointIndex++];
88 				AbstractVec2!T compute(T alpha) {
89 					auto p1 = start * (1 - alpha) + control * alpha;
90 					auto p2 = control * (1 - alpha) + point * alpha;
91 					auto q = p1 * (1 - alpha) + p2 * alpha;
92 					return q;
93 				}
94 				foreach (i; 0 .. 8) {
95 					auto alpha = (i + 1) / 8.0;
96 					auto q = compute(alpha);
97 					newPath.lineTo(q);
98 					lastPoint = q;
99 				}
100 				break;
101 			case PathCommand.CubicCurve:
102 				assert(0);
103 			}
104 		}
105 		
106 		return newPath;
107 	}
108 
109 	// TODO: this seems to break in some cases; try stroking some text to see
110 	AbstractPath!T stroke(T distanceOutward, T distanceInward) {
111 		AbstractPath!T newPath;
112 
113 		size_t pointIndex;
114 		AbstractVec2!T[] points;
115 
116 		void removeDuplicatePoints() {
117 			while (points.length > 0 && points[0].eq(points[$ - 1], 1e-7)) {
118 				points = points[0 .. $ - 1];
119 			}
120 		}
121 
122 		void finishClosedPath() {
123 			removeDuplicatePoints();
124 
125 			if (points.length < 2) {
126 				return;
127 			}
128 
129 			foreach (j; 0 .. 2) {
130 				import std.range : iota;
131 				import std.math : PI;
132 
133 				foreach (i; 0 .. points.length) {
134 					int factor = j == 0 ? 1 : -1;
135 					auto a = points[(cast(int)(i + 0) * factor + cast(int)(2 * points.length)) % cast(int) points.length];
136 					auto b = points[(cast(int)(i + 1) * factor + cast(int)(2 * points.length)) % cast(int) points.length];
137 					auto c = points[(cast(int)(i + 2) * factor + cast(int)(2 * points.length)) % cast(int) points.length];
138 					auto normalAB = (AbstractMat3!T.rotation(PI / 2) * (b - a)).normalize;
139 					auto normalBC = (AbstractMat3!T.rotation(PI / 2) * (c - b)).normalize;
140 					auto distance = j == 0 ? distanceOutward : distanceInward;
141 					auto a2 = a + normalAB * distance;
142 					auto ab = b + normalAB * distance;
143 					auto bc = b + normalBC * distance;
144 					auto c2 = c + normalBC * distance;
145 
146 					// we wanna find the intersection of r(t) = (a2 + (ab - a2) * t) and r(s) = (c2 + (bc - c2) * s)
147 
148 					AbstractVec2!T A, B, C, D;
149 					A = a2;
150 					B = ab - a2;
151 					C = c2;
152 					D = bc - c2;
153 
154 					T s = (B.x * A.y + C.x * B.y - A.x * B.y - B.x * C.y) / (B.x * D.y - D.x * B.y);
155 					AbstractVec2!T intersection = C + D * s;
156 
157 					if (i == 0) {
158 						newPath.moveTo(intersection);
159 					}
160 					else {
161 						newPath.lineTo(intersection);
162 					}
163 				}
164 
165 				newPath.close();
166 			}
167 
168 			points = [];
169 		}
170 
171 		void finishOpenPath() {
172 			if (points.length < 2) {
173 				return;
174 			}
175 
176 			foreach (j; 0 .. 2) {
177 				import std.range : iota;
178 				import std.math : PI;
179 
180 				if (j == 0) {
181 					auto a = points[0];
182 					auto b = points[1];
183 					auto normal = (AbstractMat3!T.rotation(PI / 2) * (b - a)).normalize;
184 					auto a2 = a + normal * distanceOutward;
185 
186 					newPath.moveTo(a2);
187 				}
188 				else {
189 					auto a = points[$ - 1];
190 					auto b = points[$ - 2];
191 					auto normal = (AbstractMat3!T.rotation(PI / 2) * (b - a)).normalize;
192 					auto a2 = a + normal * distanceInward;
193 
194 					newPath.lineTo(a2);
195 				}
196 
197 				foreach (i; (j == 0 ? 0 : 1) .. points.length - (j == 0 ? 2 : 1)) {
198 					int factor = j == 0 ? 1 : -1;
199 					auto a = points[(cast(int)(i + 0) * factor + cast(int)(2 * points.length)) % cast(int) points.length];
200 					auto b = points[(cast(int)(i + 1) * factor + cast(int)(2 * points.length)) % cast(int) points.length];
201 					auto c = points[(cast(int)(i + 2) * factor + cast(int)(2 * points.length)) % cast(int) points.length];
202 					auto normalAB = (AbstractMat3!T.rotation(PI / 2) * (b - a)).normalize;
203 					auto normalBC = (AbstractMat3!T.rotation(PI / 2) * (c - b)).normalize;
204 					auto distance = j == 0 ? distanceOutward : distanceInward;
205 					auto a2 = a + normalAB * distance;
206 					auto ab = b + normalAB * distance;
207 					auto bc = b + normalBC * distance;
208 					auto c2 = c + normalBC * distance;
209 
210 					// we wanna find the intersection of r(t) = (a2 + (ab - a2) * t) and r(s) = (c2 + (bc - c2) * s)
211 
212 					AbstractVec2!T A, B, C, D;
213 					A = a2;
214 					B = ab - a2;
215 					C = c2;
216 					D = bc - c2;
217 
218 					T s = (B.x * A.y + C.x * B.y - A.x * B.y - B.x * C.y) / (B.x * D.y - D.x * B.y);
219 					AbstractVec2!T intersection = C + D * s;
220 
221 					newPath.lineTo(intersection);
222 				}
223 
224 				if (j == 0) {
225 					auto a = points[$ - 1];
226 					auto b = points[$ - 2];
227 					auto normal = (AbstractMat3!T.rotation(PI / 2) * (b - a)).normalize;
228 					auto a2 = a - normal * distanceOutward;
229 
230 					newPath.lineTo(a2);
231 				}
232 				else {
233 					auto a = points[0];
234 					auto b = points[1];
235 					auto normal = (AbstractMat3!T.rotation(PI / 2) * (b - a)).normalize;
236 					auto a2 = a - normal * distanceInward;
237 
238 					newPath.lineTo(a2);
239 				}
240 			}
241 
242 			newPath.close();
243 
244 			points = [];
245 		}
246 
247 		AbstractVec2!T lastPoint;
248 
249 		foreach (cmd; commands) {
250 			final switch (cmd) {
251 			case PathCommand.Move:
252 				auto point = values[pointIndex++];
253 				finishOpenPath();
254 				points ~= point;
255 				lastPoint = point;
256 				break;
257 			case PathCommand.Close:
258 				finishClosedPath();
259 				break;
260 			case PathCommand.Line:
261 				auto point = values[pointIndex++];
262 				if (!point.eq(lastPoint, 1e-7)) {
263 					points ~= point;
264 					lastPoint = point;
265 				}
266 				break;
267 			case PathCommand.QuadCurve:
268 			case PathCommand.CubicCurve:
269 				assert(0);
270 			}
271 		}
272 
273 		finishOpenPath();
274 
275 		return newPath;
276 	}
277 
278 	AbstractPath!T stroke(double width) {
279 		return stroke(width / 2, width / 2);
280 	}
281 
282 	static AbstractPath!T rectangle(AbstractVec2!T position, AbstractVec2!T size) {
283 		AbstractPath!T result;
284 		result.moveTo(position);
285 		result.lineTo(position + AbstractVec2!T(0, size.y));
286 		result.lineTo(position + size);
287 		result.lineTo(position + AbstractVec2!T(size.x, 0));
288 		result.close();
289 		return result;
290 	}
291 
292 }